Guest guest Posted September 17, 2008 Report Share Posted September 17, 2008 FULL TEXT: http://www.medscape.com/viewarticle/579589?src=mp & spon=3 & uac=31238BR From Therapeutic Advances in Gastroenterology Review: Current Status of Antiviral Therapy for Hepatitis B Posted 09/10/2008 Daryl T.-Y. Lau; Wissam Bleibel Abstract and Introduction Abstract Chronic hepatitis B (CHB) is a major public health problem affecting up to 400 million people globally. Complications of CHB including liver failure and hepatocellular carcinoma result in 1.2 million deaths per year, making CHB the 10th leading cause of mortality worldwide. The natural history of CHB is variable and complex. The past decade witnessed important developments for the therapy of hepatitis B and marked the new era of oral therapy. The ultimate goal of CHB therapy is to arrest the progression of liver injury and to prevent the development of liver failure and hepatocellular carcinoma. Currently, six agents are approved for the treatment of CHB. Each of these agents, given as monotherapy, has been shown to produce virological, biochemical, and histological benefits for both HBeAg positive and negative CHB. There are, however, limitations in spite of their efficacy. The significant side-effect profile of interferon, for example, limits its long-term use. The approved oral agents are tolerable with prolonged use but drug resistance could limit long-term monotherapy. To date, combination therapy with nucleoside analogue and pegylated interferon or two nucleos(t)ide analogues given for one year does not show superiority in durability of response compared to monotherapy. Ongoing research effort is critical to identify the ideal hepatitis B therapy that is safe, effective, and produces durable response with a finite course of therapy. It is equally important to conduct a well designed, prospective natural history study to identify predictors of disease progression. This will accurately guide treatment strategy for this important disease. Introduction Hepatitis B virus (HBV) infection is a major public health problem worldwide, responsible for significant morbidity and mortality from chronic liver disease. It is estimated that there are 350 to 400 million HBV carriers globally [Lee, 1997]. In the United States, approximately 1.5 million people are infected and 50,000–100,000 new cases are reported annually despite the availability of effective vaccines [McQuillan et al. 1999]. This is likely an underestimate since prevalence of chronic hepatitis B (CHB) among immigrants from HBV endemic areas is much higher than that in the general population [Margolis et al. 1991]. HBV is a DNA virus in the family of Hepadnaviridae [Tacke et al. 2004]. There are eight major genotypes of HBV and their prevalence varies amongst geographic regions ( Table 1 ) [Magnius and Norder, 1995]. The compact genome of HBV consists of four partially overlapping open reading frames encoding for the envelope (pre-S/S), core (precore/core), polymerase, and X proteins [Tacke et al. 2004]. Through the process of endocytosis, HBV gains entry into the hepatocyte. However, its surface receptor has not been identified [Doo and Liang, 2001]. After uncoating, the relaxed circular genome is converted in the nucleus to a covalently closed circular (ccc) DNA that is the template for viral replication [Locarnini and Mason, 2006; Doo and Liang, 2001]. The persistence of HBV in the liver, despite antiviral therapy, is due to the maintenance of HBV cccDNA in the nuclei of infected cells. HBV replicates asymmetrically via reverse transcription of an RNA intermediate. Since its polymerase/reverse transcriptase (Pol/Rt) lacks proofreading activity, spontaneous mutations are estimated to occur at a rate of one error per 104–105 nucleotides daily [Locarnini and Mason, 2006]. The resulting random mutations at the polymerase/reverse transcriptase active site may overlap with the antiviral-induced mutations and facilitate drug resistance. CHB is defined by the persistence of serum hepatitis B surface antigen (HBsAg) for six months or longer [Hollinger and Lau, 2006]. The natural history of CHB can be classified into four major clinical phases based on levels of serum alanine aminotransferase (ALT) and HBV DNA, presence of HBeAg, and suspected immune status [Lok et al. 2001]. These phases are: (1) immune tolerance, (2) HBeAg-positive CHB, (3) inactive carrier, and (4) HBeAgnegative CHB. The disease, however, can be variable and the patients may not proceed through all phases of the disease during the course of infection ( Table 2 ) [Lok et al. 2001]. The emergence of pre-core [nucleotide 1896 mutation from guanine (G) to adenine (A)] and basal core promoter (BCP) [adenine (A) to thymine (T) transversion at nucleotide 1762 together with a guanine (G) to adenine (A) transition at nucleotide 1764] mutants lead to HBeAgnegative CHB [Hunt et al. 2000; Okamoto et al. 1994; Okamoto et al. 1990]. These patients continue to have moderate HBV replication and active liver disease. The frequency of these HBV mutants varies worldwide as a result of the different geographic distribution of the HBV genotypes. Patients with HBeAg-negative CHB typically have heterogeneity of disease activities characterized by fluctuating levels of serum aminotransferases and HBV DNA [Hadziyannis and Vassilopoulos, 2001]. These observations underscore the importance of regular assessments of HBsAg positive patients over time in order to confirm the diagnosis of HBeAg-negative CHB versus inactive HBV carrier. HBeAg positive and HBeAg negative-CHB patients with persistent or intermittent elevation of aminotransferases and HBV DNA levels, and histological evidence of active hepatitis should be considered for antiviral therapy. The past decade witnessed important developments for the therapy of hepatitis B. The availability of lamivudine in 1998 not only marked the new era of oral therapy, it also represents a paradigm shift in the management of this important disease (Figure 1). The focus of this review is to discuss both the advances and the unmet needs with the current paradigm. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.