Guest guest Posted July 10, 2004 Report Share Posted July 10, 2004 This may be of special interest to CR. ________________________________________________ Energy restriction with high-fat diet enriched with coconut oil gives higher UCP1 and lower white fat in rats. Portillo MP, Serra F, Simon E, del Barrio AS, Palou A. Nutrition and Food Science, University of Basc Country, Vitoria, Spain. OBJECTIVE: To investigate the effects of overfeeding on a high fat diet, enriched in coconut oil, and the influence of food restriction on the uncoupling protein (UCP1) expression and on body fat content. DESIGN AND SUBJECTS: In experiment I, female Wistar rats were fed ad libitum either a normal-fat diet (control group, C) or a high-fat diet (HF), enriched in coconut oil, for 7 weeks. In experiment II, HF rats after finishing experiment I were fed (for 3 weeks) either the normal-fat diet (group CAHF, Control After High Fat) or food restricted diets which provided 60% of the energy intake of group CAHF: a group fed a low-energy, normal-fat diet (LENF) and another fed a low-energy, high-fat diet (LEHF). MEASUREMENTS: Body and fatty depot weights. Food intake. Protein and UCP1 levels of interscapular brown adipose tissue. RESULTS: High-fat diet feeding promoted an increase in body fat content, body weight and UCP1 levels. Energy restriction induced similar body weight reduction in groups LENF and LEHF. However, some adipose depots were more strongly reduced in the rats fed the high-fat diet enriched in coconut oil (group LEHF) than in the rats fed the normal-fat diet (Group LENF). Specific UCP1 was 2.0 (group LENF) and 3.4 (group LEHF) times higher than in controls (group CAHF). CONCLUSION: The coconut-oil enriched diet is effective in stimulating UCP1 expression during ad libitum feeding and in preventing its down regulation during food restriction, and this goes hand in hand with a decrease of the white fat stores. PMID: 9806312 [PubMed - indexed for MEDLINE] __________________________________________________ Obesity Reviews Volume 1 Issue 2 Page 61 - October 2000 doi:10.1046/j.1467-789x.2000.00009.x The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research M. Del Mar -Barroso, D. Ricquier and A.-M. Cassard-Doulcier Summary Energy expenditure through brown adipose tissue thermogenesis contributes either to maintenance of body temperature in a cold environment or to wasted food energy, i.e. cold-induced or diet- induced thermogenesis. Both mechanisms are due to a specific and unique protein: the uncoupling protein-1. Uncoupling protein-1 is exclusively expressed in mitochondria of brown adipocytes where it uncouples respiration from ATP synthesis, dissipating the proton gradient as heat. In humans, although uncoupling protein-1 can be detected, the inability to quantify brown adipose tissue makes it difficult to argue for a role for uncoupling protein-1 in thermogenesis and energy expenditure. This review summarizes data supporting the existence of brown adipocytes and the role of UCP1 in energy dissipation in adult humans. Understanding the mechanisms which regulate transcription and expression of the human UCP1 gene will facilitate the identification of molecules able to increase the levels of this protein in order to modulate energy expenditure in adult humans. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.