Guest guest Posted September 9, 2004 Report Share Posted September 9, 2004 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve & db=pubmed & dopt=Abstract & list_uids=8921985 1: Mutat Res. 1996 Oct;366(1):23-44. Mutations of the p53 tumor suppressor gene and ras oncogenes in aflatoxin hepatocarcinogenesis. Shen HM, Ong CN. Department of Community, Occupational and Family Medicine, Faculty of Medicine, National University of Singapore, Singapore. Aflatoxin B1 (AFB1) is classified as a group I carcinogen in humans by IARC. However, the exact mechanisms of AFB1 hepatocarcinogenesis have not been fully elucidated. Recent studies have suggested that oncogenes are critical molecular targets for AFB1, and AFB1 causes characteristic genetic changes in the p53 tumor suppressor gene and ras protooncogenes. Up to date, more than 1500 human hepatocellular carcinoma (HCC) samples have been examined for p53 mutations with respect to different AFB1 exposure levels. The most significant finding is that more than 50% of HCC patients from high aflatoxin exposure areas such as southern Africa and Qidong, China harboured a codon 249 G to T transversion in the p53 tumor suppressor gene, which is found to be consistent with the mutagenic specificity of AFB1 observed in vitro. In contrast, this mutational pattern is not found in HCC samples from moderate or low aflatoxin exposure countries or regions. Therefore, this hot-spot mutation is believed to be a molecular fingerprint linking the initial event of AFB1-DNA adduct formation with the ultimate development and progress of human HCC. However, some important points still remain to be explicated. First, in many of these studies, the systematic evaluation of AFB1 exposure is rather limited and the classification of AFB1 exposure level is speculative and confusing, without the definite evidence for the actual aflatoxin exposure level. Second, the role of hepadnaviral infection has to be considered in the induction of this unique mutational spectrum. On the other hand, ras oncogene mutations are frequently found in AFB1-induced HCC samples in experimental animals, while the frequency of ras mutation in human HCC in contrast is much lower than that of p53. Recent studies have provided additional evidence that reactive oxygen species (ROS) and oxidative DNA damage may be involved in AFB1-induced p53 and ras mutations. In future, follow-up cohorts exposed to different levels of AFB1 combined with the determination of putative gene markers are much needed. FAIR USE NOTICE: This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in our efforts to advance understanding of environmental, political, human rights, economic, democracy, scientific, and social justice issues, etc. We believe this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes. For more information go to: http://www4.law.cornell.edu/uscode/17/107.html If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.