Guest guest Posted March 12, 2008 Report Share Posted March 12, 2008 Med Sci Sports Exerc. 2008 Feb 29 Human Muscle Gene Expression following Resistance Exercise and Blood Flow Restriction. Drummond MJ, Fujita S, Takashi A, Dreyer HC, Volpi E, Rasmussen BB. 1Departments of Physical Therapy and 2Internal Medicine and 3Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX; and 4Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Chiba, JAPAN. INTRODUCTION:: Blood flow restriction in combination with low- intensity resistance exercise (REFR) increases skeletal muscle size to a similar extent as compared with traditional high-intensity resistance exercise training. However, there are limited data describing the molecular adaptations that occur after REFR. PURPOSE:: To determine whether hypoxia inducible factor-1 alpha (HIF- 1alpha) and REDD1 mRNA are expressed differently in REFR compared with low-intensity resistance exercise with no blood flow restriction (CONTROL). Secondly, to determine whether low-intensity resistance exercise is able to induce changes in mRNA expression of several anabolic and catabolic genes as typically seen with high-intensity resistance exercise. METHODS:: Six subjects were studied at baseline and 3 h after a bout of leg resistance exercise (20% 1RM) in REFR and CONTROL subjects. Each subject participated in both groups, with 3 wk separating each visit. Muscle biopsy samples were analyzed for mRNA expression, using qRT-PCR. RESULTS:: Our primary finding was that there were no differences between CONTROL and REFR for any of the selected genes at 3 h after exercise (P > 0.05). However, low-intensity resistance exercise increased HIF-1alpha, p21, MyoD, and muscle RING finger 1 (MuRF1) mRNA expression and decreased REDD1 and myostatin mRNA expression in both groups (P < 0.05). CONCLUSION:: Low-intensity resistance exercise can alter skeletal muscle mRNA expression of several genes associated with muscle growth and remodeling, such as REDD1, HIF-1alpha, MyoD, MuRF1, and myostatin. Further, the results from REFR and CONTROL were similar, indicating that the changes in early postexercise gene expression were attributable to the low-intensity resistance exercise bout, and not blood flow restriction. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.