Guest guest Posted March 16, 2012 Report Share Posted March 16, 2012 Below you will find the Abstract, Introduction-, Discussion- sections of: *Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture* The full text can be found at the address below ~jan van roijen ```` http://bit.ly/wb3GYg PLOSone Research Article Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture Ketha V. K. Mohan1#, Krishnakumar Devadas2#, Shilpakala Sainath Rao1, Indira Hewlett2, Chintamani Atreya1* 1 Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, land, United States of America, 2 Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, land, United States of America Abstract Introduction XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture. Methods Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray. Results MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types. Discussion The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types. Introduction XMRV is a recently identified gammaretrovirus, closely related to xenotropic murine leukemia viruses (MLVs), that was initially detected in familial cases of prostate cancer tissue using a virus gene array [1]. XMRV was also detected in blood cells of patients with Chronic Fatigue Syndrome (CFS) and normal healthy controls [2], [3]. Subsequently, a number of additional studies have failed to confirm any association of XMRV with CFS or prostate cancer [4]–[11]. Indeed, recent reports suggest that XMRV likely originated as a laboratory contaminant in prostate xenografts serially passaged through nude mice by the recombination of endogenous MLVs. Though the XMRV is of murine origin, it is known to infect different human cell types like T and B lymphocytes, NK cells, prostate cancer cell lines, and neuronal cells [12]–[15]. Various detection methods like serology, cell culture, and nucleic-acid based assays have already been used for detecting XMRV infection [4], [12], [16]–[19]. However, use of microRNAs (miRNAs) as biomarkers of XMRV infection has not been reported so far. MicroRNAs have known to play a critical role in the life cycle of retroviruses and a few oncogenic viruses such as reticuloendotheliosis virus strain T (REV-T), Epstein-Barr virus and Hepatitis C virus (HCV) wherein the viruses regulate host cells and viral replication through specific microRNAs [20]–[23]. MicroRNAs are a class of evolutionarily conserved, endogenous, small non-coding RNAs that regulate gene expression and play a role in diverse cellular processes, including proliferation, differentiation and cell death [24]. As an abundant class of regulatory molecules, there are hundreds of distinct miRNAs identified in the human genome to date and hundreds more predicted. A single miRNA can regulate expression of multiple genes, and expression of a single gene may be regulated by several distinct miRNAs, creating complicated regulatory networks. It is estimated that roughly 60% of human protein-coding genes are regulated by miRNAs [25]–[28]. In this study, we evaluated whether miRNAs are modulated by XMRV in cultured cells and if so, can they be identified to see whether a single or a set of miRNAs specific to the infection can be detected early that could serve as biomarker(s) of XMRV infection. Our results demonstrate that a) two miRNAs, miR-193a-3p and miRPlus-E1245 (a proprietary sequence of Exiqon Inc, Denmark and named as such to differentiate from miR-1245) were commonly regulated among all 4 cell types infected with XMRV used in the study, and while miR-193a-3p is down regulated, miRPlus-E1245 exhibited varied expression profile in the four cell types infected with XMRV. Discussion The discovery of XMRV and its potential association with PC and CFS aroused considerable excitement and promise within the research and clinical community regarding a possible infectious etiology for at least some cases of these disease or conditions. [2], [3], [33]. However, recent research findings have not supported any association between the virus and CFS or prostate cancer [7], [9], [10], [34]–[37]. In fact, the virus itself may have originated as a result of recombination in a laboratory setting [38], [39]. Specifically, it has been postulated that XMRV originated as a result of recombination between two MLV proviruses in laboratory mice [40]. These findings appear to raise doubts about the significance and involvement of XMRV in any human disease or condition [38]–[41]. Nonetheless, because at least some studies have demonstrated that XMRV is a culturable virus and that it can readily infect cells of human origin [12]–[15], additional research efforts will help to further our understanding of XMRV pathogenesis and provide insights into the modes of transmission involved in XMRV infection. It also remains to be seen whether XMRV demonstrates potential to be transmitted across species [12], [37], [41]. The present study further emphasizes that XMRV can infect human prostate and hematopoietic cells and the study clearly demonstrates that microRNAs are regulated during XMRV infection of these culturable human cells. In fact, the qPCR results indicate that while all the 4 cell types were susceptible to XMRV infection with significant increase in viral titers by 48 h time point it was evident that there was a distinct difference in infection levels between the 4 cell types (Fig. 1). The prostate cell lines (LNCaP and DU145) supported robust XMRV infection, while the PBLs and MDMs were moderately infected. It is interesting to note that the variability in infection status of the 4 cell types may potentially be dependent on individual APOBEC levels in each cell type [42]. It has been shown earlier that XMRV is resistant to human APOBEC 3G (hA3G) and that the levels of hA3G are down-regulated by XMRV in LNCaP and DU145 cells thereby supporting efficient viral infection in these cell types [42], [43]. The hA3G is down regulated by the human immunodeficiency virus-1 (HIV-1) vif protein during infection. However, since XMRV lacks vif, an alternate mechanism of hA3G down regulation has been suggested [43]. PBMCs on the other hand, seemingly possess significantly higher levels of h3AG and hence are relatively resistant to XMRV infection [42]. The two microRNAs (miR-193a-3p and miRPlus-E1245) are moderately regulated in the four cell types. However, it is interesting to note that within the four cell types, miR-193a-3p is down regulated over time, while miRPlus-E1245 however exhibited varied levels of expression profile between the 4 cell types: up regulation in MDMs and PBL cell types and down regulation in LNCaP and DU156 cell types. Since the miRPlus-E1245 has not been annotated and not submitted in the miRNA database yet by its discoverer, the Exiqon Inc., Denmark, it is not feasible at this time to identify its potential targets. Therefore, we only analyzed the miR-193a-3p for its tentative mRNA targets by 3 different online programs as indicated in Table 1. Target Prediction by miRDB, TargetScan and microRNA.org programs revealed that out of the top 10 mRNA targets that were identified individually by these 3 different softwares, 1 target mRNA was picked by all three programs and 5 mRNA targets were commonly flagged at least by two different programs. Of the six predicted mRNA targets for miR-193a-3p, five mRNA targets were related to tumorogenesis or suppression. Interestingly 3 mRNA targets, namely SON DNA binding domain (SON), Friend Leukemia Virus Integration 1 (FLI1) and v-erb-erythroblastic leukemia viral oncogene homolog 4 (ERBB4) have been implicated with virus/virus infections. Of the 3, the FLI1 protein (or its homolog) may have a potential role in XMRV infection as this protein has already been implicated in Friend Leukemia Virus which also is a retrovirus causing tumorigenesis [44], [45]. The human genome was recently analyzed for potential XMRV genome integration sites and results revealed that the virus had integration sites in at least 11 of the 23 chromosomes [46]. Hence it is to be seen whether this particular host mRNA target is being modulated by miR-193a-3p during XMRV infection. Of the other two, while the SON protein binds to hepatitis B virus (HBV) DNA and exhibits sequence similarity to other oncoproteins, the ERBB4 protein affects mitogenesis and cell differentiation and furthermore it is known that mutations within this gene are associated with cancer [47]–[49]. More pertinently, while the qPCR results revealed robust infection in two cell types (LNCaP and DU145 cells) and moderate infection in the other two tested cell types (PBLs and MDMs), what is common to all 4 cell types is the regulation of the two miRNAs (miR-193a-3p and miRPlus-E1245) during XMRV infection regardless of the level of infectivity, virus titer or dose of the infection. This is the first report indicating the expression and regulation of miRs during XMRV infection of human cells. It remains to be seen whether the same set of miRNAs are up regulated during infection of murine cells or cell lines. The current findings reported here certainly demonstrate that XMRV infection modulates miRNAs in the host cells as is the case with many other viruses that are pathogenic to humans [20]–[23]. In human retroviruses such as HIV-1 and HTLV-1, the role of microRNAs has already been demonstrated [50]–[54]. Many of these exquisite studies have clearly shown how certain miRs up regulate or down regulate certain host genes/proteins to promote viral infection or disease pathogenesis [50]–[52], [54], [55]. In fact, it is now known that HIV-1 and other viruses themselves code for microRNAs, which play a critical regulatory role during virus infection [50], [56]. Our studies also demonstrate that miRNA profiles are different in XMRV-infected prostate cancer cell lines compared to primary hematopoietic cells, suggesting that miRNAs could play a role in XMRV infection, and serve as markers of XMRV infection in cultured cells. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.