Guest guest Posted October 22, 2009 Report Share Posted October 22, 2009 Personal Genome Sequencing Identifies Mendelian Mutations http://www.bio-itworld.com/news/10/22/09/personal-genomes-mendelian-mutations.ht\ ml By Davies October 22, 2009 | HONOLULU – The only downside of holding a major scientific conference in Hawaii is that, at some point, one has to step inside and attend a talk or two. But those among the more than 4600 registered attendees at the 2009 American Society of Human Genetics (ASHG) convention who ventured indoors were treated to some excellent talks on the opening day. In particular, two groups presented impressive results of next-generation sequencing studies that conclusively show how it is possible to identify previously unknown mutations responsible for Mendelian diseases. Lupski (Baylor College of Medicine) is an authority in the area of structural variants underlying genetic disorders (and has been for two decades). In the early 1990s, his team characterized the novel sub-chromosomal duplication that gave rise to a common form of peripheral neuropathy called Charcot-Marie-Tooth (CMT) disease. Since then, mutations in some 40 genes have been shown to give rise to CMT-like diseases. But none of them accounted for one particularly interested patient: Lupski himself. Earlier this year, Gibbs, director of the Baylor Genome Center, offered to sequence Lupksi's entire genome in the hopes of finally identifying the mystery mutant gene. (Gibbs and Lupski were part of the team that interpreted the first personal genome delivered by next-gen sequencing, , in 2007.) Using the Life Technologies/Applied Biosystems SOLiD platform, Gibbs and colleagues sequenced Lupski's DNA to 30-fold coverage. Not surprisingly, the sequencing produced thousands of single-nucleotide polymorphisms (SNPs) considered putative disease-causing mutations. Gibbs applied a series of filters, removing SNPs already catalogued in the database (and thus considered too common to be the basis of a rare genetic disorder) as well as those found in HapMap samples. Lupski detailed how 6 SNPs in his genome were correlated with known behavioral disorders, 32 were cancer associated (Lupski is a cancer survivor), and 47 were implicated in common diseases. In the end, Lupski and colleagues found different deleterious mutations in his two inherited copies of a gene called SH3TC2. The gene encodes a protein expressed in the membrane of Schwann cells that could have a role in the myelination of nerve fibers. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.