Jump to content
RemedySpot.com

Vitamin A - Weston A. Price Foundation

Rate this topic


Guest guest

Recommended Posts

Vitamin A - Weston A. Price Foundation

http://www.westonaprice.org/nutrition_guidelines/vitaminasaga.html

KEY Excerpts from below article (full article follows)

* " The scientific term for vitamin A is retinol, because of its presence

in the retina of the eye "

* " Only animal fats contain vitamin A and vitamin A is present in large

amounts only when the animals have a source of carotenes or vitamin A in

the diet, such as green pasture, insects and fish meal. "

* " Unfortunately, the vast majority of popular books on nutrition insist

that humans can obtain vitamin A from fruits and vegetables "

* CAROTENES ARE NOT VITAMIN A

* " Under optimal conditions, humans can indeed convert carotenes to

vitamin A. "

* " But the transformation of carotene to retinol is rarely optimal. "

* " It is very unwise, therefore, to depend on plant sources for vitamin A. "

* " Vitamin A stores are rapidly depleted during exercise, fever and

periods of stress. Even people who can efficiently convert carotenes to

vitamin A cannot quickly and adequately replenish vitamin A stores from

plant foods. "

* " In Third World communities that have come into contact with the West,

vitamin-A deficiencies are widespread and contribute to high infant

mortality, blindness, stunting, bone deformities and susceptibility to

infection "

* " Children with measles rapidly use up vitamin A, which can result in

irreversible blindness. An interval of three years between pregnancies

allows mothers to rebuild vitamin A stores so that subsequent children will

not suffer diminished vitality. "

* " Growing children actually benefit from a diet that contains

considerably more calories as fat than as protein.12 A high-fat diet that

is rich in vitamin A will result in steady, even growth, a sturdy physique

and high immunity to illness "

* " The anti-vitamin-A campaign began in 1995 with the publication of a

Boston University School of Medicine study published in the New England

Journal of Medicine.15 " Teratogenicity of High Vitamin A Intake, " by

J. Rothman and his colleagues "

* " While scientists in America are creating confusion and fear about

vitamin A, WHO and UNICEF vitamin-A-distribution programs in Africa and

Asia have been extremely successful in reducing blindness and death among

both children and adults. Vitamin A is more cost effective in saving lives

and preventing suffering than immunizations and drugs and it can be

administered with 2-cent capsules. The program does not undermine

traditional cultures or foodways and is easily carried out on the village

level. "

* In the 3rd World........

" Although the vitamin A distributed is synthetic and not the natural form

derived from fish oils, it is the animal form of vitamin A (retinol), not

carotenes. Children six to twelve months old receive two doses of 100,000

units per year; children over 12 months receive two doses of 200,000 per

year. According to Werner Schultink, head of the Nutrition Section at

UNICEF headquarters in New York, infant and child mortality drops about 23

percent when vitamin A levels are adequate. The program in Nepal costs just

over $2 million per year, less than $1 per child (Reuter's 2/12/01). "

* SOURCES OF VITAMIN A

Listed below are approximate levels of vitamin A in common foods, in IUs

per 100 grams:

High-vitamin cod liver oil 230,000

Regular cod liver oil 100,000

Duck liver 40,000

Beef liver 35,000

Goose liver 31,000

Liverwurst sausage (pork) 28,000

Lamb liver 25,000

FULL ARTICLE BELOW - excellent - encourage you to print out

The Weston A. Price Foundation

Vitamin A Saga

By Sally Fallon and G. Enig, PhD

The discovery of vitamin A and the history of its application in the field

of human nutrition is a story of bravery and brilliance, one that

represents a marriage of the best of scientific inquiry with worldwide

cultural traditions; and the suborning of that knowledge to the dictates of

the food industry provides a sad lesson in the use of power and influence

to obfuscate the truth.

A key player in this fascinating story is Weston A. Price, who discovered

that the diets of healthy traditional peoples contained at least ten times

as much vitamin A as the American diet of his day. His work revealed that

vitamin A is one of several fat-soluble activators present only in animal

fats and necessary for the assimilation of minerals in the diet. He noted

that the foods held sacred by the peoples he studied, such as spring

butter, fish eggs and shark liver, were exceptionally rich in vitamin A.

All traditional cultures recognized that certain foods were necessary to

prevent blindness. In his pioneering work, Nutrition and Physical

Degeneration, Weston Price tells the story of a prospector who, while

crossing a high plateau in the Rocky Mountains, went blind with

xerophthalmia, due to a lack of vitamin A. As he wept in despair, he was

discovered by an Indian who caught him a trout and fed him " the flesh of

the head and the tissues back of the eyes, including the eyes. " 1 Within a

few hours his sight began to return and within two days his eyes were

nearly normal. Several years previous to the travels of Weston Price,

scientists had discovered that the richest source of vitamin A in the

entire animal body is that of the retina and the tissues in back of the eyes.

Many cultures used liver, another excellent source of vitamin A, for

various types of blindness.2 The liver was first pressed to the eye and

then eaten, a ritual through which the patient directed the healing powers

of liver to the afflicted sense organ. The Egyptians described this cure at

least 3500 years ago. Similar practices have been described in 18th-century

Russia, rural Java in 1978 and among the inhabitants of Newfoundland in

1929. Other cultures used the liver of shark. Hippocrates (460-327 BC)

prescribed liver soaked in honey for blindness in malnourished children.

Assyrian texts dating from 700 BC and Chinese medical writings from the 7th

century AD both call for the use of liver in the treatment of night

blindness. A 12th-century Hebrew treatise recommends pressing goat liver to

the eyes, followed by eating of the liver. In the Middle Ages, the Dutch

physician van Laerlandt (1235-1299) wrote the following:

Who does not at night see right

Eats the liver of goat

He will then see better at night.

VITAMIN-A BRAVERY

Night blindness was a recurring problem among sailors on long voyages but

by the advent of the great European navies, the wisdom of traditional liver

therapy was largely ignored. It took brave dedication to the scientific

method to confirm the validity of the ancient treatments. The first to do

this was Eduard Schwarz (1831-1862), a ship's doctor on an Austrian frigate

that was sent around the world on a scientific exploration. Before his

departure from Vienna, several physicians had asked Schwartz to test the

old folk remedy of boiled ox liver against night blindness. On the voyage,

75 of the 352 men developed the condition. Every evening when dusk came,

they lost their vision and had to be led about like the blind. Schwartz fed

them ox or pork liver and found that the night vision in all of the

afflicted was restored.

The cure was " a true miracle, " said Schwartz in his published report, which

stated emphatically that night blindness was a nutritional disease. For

this he was viciously attacked by the medical profession, which accused him

of " frivolity " and " self-aggrandizement. " Three years after his return from

the expedition, the discredited physician died of TB. He was 31. The use of

vitamin-A-rich foods for tuberculosis had not yet been discovered.

In 1904, the Japanese physician M. Mori described xerophthalmia in

undernourished children whose diet consisted of rice, barley, cereals " and

other vegetables. " Xerophthalmia is a condition that progresses from night

blindness to dissolution of the cornea and finally the bursting of the eye.

He treated the children with liver and also cod liver oil with excellent

results. In fact, he found that cod liver oil was even more effective than

liver in restoring visual function. Mori described it as " an excellent,

almost specific medication. . . Indeed, in most cases, the effect is so

rapid that by evening the children with night blindness are already dancing

around briskly, to the joy of their mothers. " Cod liver oil also helped

reverse keratomalacia, a condition associated with severe nutritional

deficiencies and characterized by corneal ulceration, extreme dryness of

the eyes and infection.

At the end of the First World War, a physician named Bloch discovered that

a diet containing whole milk, butter, eggs and cod liver oil cured night

blindness and keratomalacia. In one important experiment, Bloch compared

the results when he fed one group of children whole milk and the other

margarine as the only fat. Half of the margarine-fed children developed

corneal problems while the children receiving butterfat and cod liver oil

remained healthy.

The actual discovery of vitamin A is credited to a researcher named E. V.

McCollum. He was curious why cows fed wheat did not thrive, became blind

and gave birth to dead calves, while those fed yellow corn had no health

problems. The year was 1907 and by this time, scientists were able to

determine the levels of protein, carbohydrate, fat and minerals in food.

The wheat and corn used in McCollum's experiments contained equal levels of

minerals and macronutrients. McCollum wondered whether the wheat contained

a toxic substance, or whether there was something lacking in the wheat that

was present in yellow maize?

In order to solve the puzzle, McCollum hit upon the idea of using small

animals like mice or rats rather than cows for nutrition experiments—they

ate less, took up less space, reproduced rapidly and could be given

controlled diets. Like many good ideas, this one met with considerable

opposition. McCollum worked in the Wisconsin College of Agriculture and was

told by the dean " to experiment with economically valuable animals—the rat

was a pest to farmers! " McCollum was forced to work secretly in the

basement of the Agriculture Hall where he studied the effects of various

diets on colonies of rats. He discovered that rats fed pure protein, pure

skim milk, sugar, minerals and lard or olive oil for fat failed to grow.

When he added butterfat or an extract of egg yolk to their diets, their

health was restored. He discovered a fat-soluble factor in certain foods

that was essential for growth and survival. This was named " fat-soluble

factor A " as opposed to other accessory dietary factors, called

" water-soluble B. "

Research by Osbourne and Mendel, published just five months after

McCollum's study, found that cod liver oil produced the same results as

butter in rat studies, thus confirming the early work of Mori in Japan.

Continued experiments helped scientists determine that vitamin A was

colorless, but often associated in foods with beta-carotene, which was

yellow. In the 1930s, researchers discovered that vitamin A is formed by

the conversion of beta-carotenes in the intestinal mucosa of animals and

humans.

The scientific term for vitamin A is retinol, because of its presence in

the retina of the eye. The role of retinol in vision was elucidated by a

number of brilliant scientists, beginning in 1877 with a German, W. Kuhne,

who discovered that the purple retinas from dark-adapted frogs turned

yellow when exposed to light. The purple color is restored in a complex

biochemical cycle involving vitamin A, which makes vision possible. Other

scientists demonstrated the role of vitamin A in cell differentiation, bone

development, reproduction and immune system function. Weston Price

confirmed the value of vitamin A in traditional diets during his studies of

primitive peoples carried out during the 1930s and 1940s.

Due to the outstanding scientific work of these and many other researchers,

the administration of cod liver oil to growing children—a tradition found

among Arctic peoples such as the Scandanivians and Eskimos—became standard

practice until after the Second World War. Ironically, as Americans have

stopped giving cod liver oil to their children, programs to administer

vitamin A to children in Africa and Asia have had astonishing success in

preventing blindness and infectious disease. This vitamin-A-treatment

program was the brainchild of yet another brave researcher, Alfred Sommer,

an ophthalmologist at s Hopkins University, who patiently lobbied for

an international program after observing the wonderful effects of vitamin-A

supplementation in Indonesia and Nepal.

In recent decades, much vitamin-A research has focussed on its role in

preventing cancer, and its use in combination with nontoxic therapies in

the treatment of cancer. Unfortunately, research on the anticarcinogenic

properties of vitamin A has not been widely adopted. Perhaps the most

tragic example is Dr. Max Gerson, who treated many cases of terminal cancer

with excellent results using raw liver juice, a rich source of vitamin A.

In 1946, he testified before a US congressional committee on the success of

his treatment, but it was subsequently ignored.3 In 1973, Dr. Kanematsu

Sigiura of the Sloan Kettering Institute published the results of studies

on mammary tumors in mice using high doses of vitamin A and a derivative of

seeds called laetrile. He observed complete regression of all the tumors in

a total of five mice. The final report noted that " Dr. Sigiura has never

observed complete regression of these tumors in all his cosmic experience

with other chemotherapeutic agents. " Nevertheless, just a few months later,

spokesmen for Sloan Kettering flatly denied that there was any value in the

therapy.4

VITAMIN-A VAGARY

While the ongoing process of research into vitamin A and its effects is a

boon to children and adults throughout the world, modern agriculture and

food processing conglomerates gain nothing from this knowledge. Confinement

farming practices effectively prevent vitamin A from incorporation into

animal foods and the processing industry would rather use vegetable oils

than animal fats. Some vegetable oils contain carotenes but they do not

contain true vitamin A. Only animal fats contain vitamin A and vitamin A is

present in large amounts only when the animals have a source of carotenes

or vitamin A in the diet, such as green pasture, insects and fish meal.

Unfortunately, the vast majority of popular books on nutrition insist that

humans can obtain vitamin A from fruits and vegetables. Even worse, FDA

regulations allow food processors to label carotenes as vitamin A. The

label for a can of tomatoes says that tomatoes contain vitamin A, even

though the only source of true vitamin A in the tomatoes is the microscopic

insect parts. The food industry, and the lowfat school of nutrition that

the industry has spawned, benefit greatly from the fact that the public has

only vague notions about vitamin A. In fact, most of the foods that provide

large amounts of vitamin A—butter, egg yolks, liver, organ meats and

shellfish—have been subject to intense demonization.

Under optimal conditions, humans can indeed convert carotenes to vitamin A.

This occurs in the upper intestinal tract by the action of bile salts and

fat-splitting enzymes. Of the entire family of carotenes, beta-carotene is

most easily converted to vitamin A. Early studies indicated an equivalency

of 4:1 of beta-carotene to retinol. In other words, four units of

beta-carotene were needed to produce one unit of vitamin A. This ratio was

later revised to 6:1 and recent research suggests an even higher ratio.5

This means that you have to eat an awful lot of vegetables and fruits to

obtain even the daily minimal requirements of vitamin A, assuming optimal

conversion.

But the transformation of carotene to retinol is rarely optimal. Diabetics

and those with poor thyroid function, a group that could well include at

least half the adult US population, cannot make the conversion. Children

make the conversion very poorly and infants not at all — they must obtain

their precious stores of vitamin A from animal fats6— yet the low-fat diet

is often recommended for children. Strenuous physical exercise, excessive

consumption of alcohol, excessive consumption of iron (especially from

" fortified " white flour and breakfast cereal), use of a number of popular

drugs, excessive consumption of polyunsaturated fatty acids, zinc

deficiency and even cold weather can hinder the conversion of carotenes to

vitamin A,7 as does the lowfat diet.

Carotenes are converted by the action of bile salts, and very little bile

reaches the intestine when a meal is low in fat. The epicure who puts

butter on his vegetables and adds cream to his vegetable soup is wiser than

he knows. Butterfat stimulates the secretion of bile needed to convert

carotenes from vegetables into vitamin A, and at the same time supplies

very easily absorbed true vitamin A. Polyunsaturated oils also stimulate

the secretion of bile salts but can cause rapid destruction of carotene

unless antioxidants are present.

It is very unwise, therefore, to depend on plant sources for vitamin A.

This vital nutrient is needed for the growth and repair of body tissues; it

helps protect mucous membranes of the mouth, nose, throat and lungs; it

prompts the secretion of gastric juices necessary for proper digestion of

protein; it helps to build strong bones and teeth and rich blood; it is

essential for good eyesight; it aids in the production of RNA; and

contributes to the health of the immune system. Vitamin-A deficiency in

pregnant mothers results in offspring with eye defects, displaced kidneys,

harelip, cleft palate and abnormalities of the heart and larger blood

vessels. Vitamin A stores are rapidly depleted during exercise, fever and

periods of stress. Even people who can efficiently convert carotenes to

vitamin A cannot quickly and adequately replenish vitamin A stores from

plant foods.

Foods high in vitamin A are especially important for diabetics and those

suffering from thyroid conditions. In fact, the thyroid gland requires more

vitamin A than the other glands, and cannot function without it.8 And a

diet rich in vitamin A will help protect the diabetic from the degenerative

conditions associated with the disease, such as problems with the retina

and with healing.

Weston Price considered the fat-soluble vitamins, especially vitamin A, to

be the catalysts on which all other biological processes depend.9 Efficient

mineral uptake and utilization of water-soluble vitamins require sufficient

vitamin A in the diet. His research demonstrated that generous amounts of

vitamin A insure healthy reproduction and offspring with attractive wide

faces, straight teeth and strong sturdy bodies. He discovered that healthy

primitives especially value vitamin-A-rich foods for growing children and

pregnant mothers. The tenfold disparity that Price discovered between

primitive diets and the American diet in the 1940s is almost certainly

greater today as Americans have forsworn butter and cod liver oil for

empty, processed polyunsaturates.

In Third World communities that have come into contact with the West,

vitamin-A deficiencies are widespread and contribute to high infant

mortality, blindness, stunting, bone deformities and susceptibility to

infection.10 These occur even in communities that have access to plentiful

carotenes in vegetables and fruits. Scarcity of good quality dairy

products, a rejection of organ meats as old fashioned or unhealthful, and a

substitution of vegetable oil for animal fat in cooking all contribute to

the physical degeneration and suffering of Third World peoples.

Supplies of vitamin A are so vital to the human organism that mankind is

able to store large quantities of it in the liver and other organs. Thus it

is possible for an adult to subsist on a fat-free diet for a considerable

period of time before overt symptoms of deficiency appear. But during times

of stress, vitamin A stores are rapidly depleted. Strenuous physical

exercise, periods of physical growth, pregnancy, lactation and infection

are stresses that quickly deplete vitamin A stores. Children with measles

rapidly use up vitamin A, which can result in irreversible blindness. An

interval of three years between pregnancies allows mothers to rebuild

vitamin A stores so that subsequent children will not suffer diminished

vitality.

One aspect of vitamin A that deserves more emphasis is its role in protein

utilization. Kwashiorkor is as much a disease of vitamin-A deficiency,

leading to impaired protein absorption, as it is a result of absence of

protein in the diet. High-protein, lowfat diets are especially dangerous

because protein consumption rapidly depletes vitamin-A stores. Children

brought up on high-protein, lowfat diets often experience rapid growth. The

results—tall, myopic, lanky individuals with crowded teeth, and poor bone

structure, a kind of Ichabod Crane syndrome—are a fixture in America.

High-protein, lowfat diets can even cause blindness as occurred once in

Guatemala where huge amounts of instant nonfat dry milk were donated in a

food relief program.11 The people who consumed the dried milk went blind.

Primitive peoples understood this principle instinctively, which is why

they never ate lean meat and always consumed the organ meats of the animals

that served them for food.

Growing children actually benefit from a diet that contains considerably

more calories as fat than as protein.12 A high-fat diet that is rich in

vitamin A will result in steady, even growth, a sturdy physique and high

immunity to illness.

The great discrepancy between what science has discovered about vitamin A

and what nutrition writers promote in the popular press contributes to

awkward moments. The New York Times has been a strong advocate for lowfat

diets, even for children, yet a recent NYT article noted that

vitamin-A-rich foods like liver, egg yolk, cream and shellfish confer

resistance to infectious diseases in children and prevent cancer in

adults.13 A Washington Post article hailed vitamin A as " cheap and

effective, with wonders still being (re)discovered, " noting that recent

studies have found that vitamin-A supplements help prevent infant mortality

in Third World countries, protect measles victims from severe complications

and prevent mother-to-child transmission of HIV virus.14 The article lists

butter, egg yolk and liver as important sources of vitamin A, but claims,

unfortunately, that carotenes from vegetables are " equally important. "

Vitamin-A vagary confuses the public and contributes to continued

acceptance of lowfat dogma, even among science writers.

VITAMIN -A KNAVERY

Even worse than vitamin-A vagary is vitamin-A knavery in the form of

concerns that vitamin A may be toxic in more than the minuscule

RDA-recommended amounts. In fact, so great is the propaganda against the

vitamin that obstetricians and pediatricians are now warning patients to

avoid foods containing vitamin A!

Recently an " expert " panel recommended lowering the RDA (recommended daily

allowance) for vitamin A from 5000 IU daily to about 2500 IU and has set an

upper limit of about 10,000 IUs for women. The panel was headed by Dr.

of Tufts University, who warned that intake over the " upper

limit " may cause irreversible liver damage and birth defects—a ridiculous

statement in view of the fact that just a few decades ago pregnant women

were routinely advised to take cod liver oil daily and eat liver several

times per week. One tablespoon of cod liver oil contains at least 15,000 IU

and one serving of liver can contain up to 40,000 IU vitamin A.

epitomizes the establishment view when he insists that vitamin-A

requirements can be met with one-half cup of carrots daily.

The anti-vitamin-A campaign began in 1995 with the publication of a Boston

University School of Medicine study published in the New England Journal of

Medicine.15 " Teratogenicity of High Vitamin A Intake, " by J.

Rothman and his colleagues, correlates vitamin-A consumption among more

than 22,000 pregnant women with birth defects occurring in subsequent

offspring. The study received extensive press coverage in the same

publications that had earlier extolled the benefits of vitamin A. " Study

Links Excess Vitamin A and Birth Defects " by Jane Brody appeared on the

front page of the New York Times on October 7, 1995; on November 24, 1995,

the Washington Times reported: " High doses of vitamin A linked to babies'

brain defects. "

When a single study receives front-page coverage, it's important to take a

closer look, especially as earlier research discovered the importance of

vitamin A in preventing birth defects. In fact, the defects listed as

increasing with increased vitamin A dosage—cleft lip, cleft palate,

hydrocephalus and major heart malformations—are also defects of vitamin A

deficiency.

In the study, researchers asked over 22,000 women to respond to

questionnaires about their eating habits and supplement intake before and

during pregnancy. Their responses were used to determine vitamin-A status.

As reported in the newspapers, researchers found that cranial-neural-crest

defects increased with increased dosages of vitamin A; what the papers did

not report was the fact that neural tube defects decreased with increased

vitamin A consumption, and that no trend was apparent with musculoskeletal,

urogenital or other defects. The trend was much less pronounced, and less

statistically significant, when cranial-neural-crest defects were

correlated with vitamin-A consumption from food alone.

The study is compromised by a number of flaws. Vitamin-A status was

assessed by the inaccurate method of recall and questionnaires; and no

blood tests were taken to determine the actual usable vitamin-A status of

the mothers. Researchers did not weight birth defects according to

severity; thus we do not know whether the defects of babies born to mothers

taking high doses of vitamin A were serious or minor compared to those of

mothers taking lower amounts.

The most serious flaw was that researchers failed to distinguish between

manufactured vitamin A in the form of retinol, found in supplements and

added to fabricated foods, from natural vitamin-A complex, present with

numerous co-factors, from vitamin-A-containing foods. It is well known that

synthetic vitamins are less biologically active, hence less effective, than

naturally occurring vitamins. This is especially true of the fat-soluble

vitamins like vitamin A, because these tend to be more complex molecules,

with numerous double bonds and a multiplicity of forms. Natural vitamin A

occurs as a mixture of various isomers, aldehydes, esters, acids and

alcohols. Pure retinoic acid, a metabolite of vitamin A used to treat adult

acne, is well known to cause birth defects. Apparently pure retinol has

teratogenic properties in high amounts as well.

Researchers found that cranial-neural-crest defects increased in proportion

to the amount of retinol from supplements consumed during the first

trimester of pregnancy (although the total number of defects remained

stable up to 15,000 IU daily). Research into vitamin A has indicated that

many factors interfere with its absorption and utilization. Inadequate fat

in the diet, poor production of bile salts, low enzyme status, and

compromised liver function can all interfere with the uptake and usage of

vitamin A, especially when given as a supplement in the form of retinol,

rather than as a component of whole foods. It may be that the teratogenic

effects of commercial vitamin-A preparations are exacerbated in women whose

dietary practices and general health status are poor. Some researchers

believe that synthetic vitamin A interferes with the proper utilization of

natural vitamin A from foods.

Pure retinol is added to many fabricated foods like margarine, breakfast

cereals and pizza. The study made no distinction between those women whose

vitamin A was supplied by whole animal foods and those who ingested retinol

added to margarine, white flour and extruded breakfast cereals—foods which

contain many other factors that can cause birth defects. Natural vitamin A

provided by liver, eggs, butter, cream and cod liver oil is well recognized

as providing excellent protection against birth defects.

Distinctions between synthetic and natural vitamin A have been absent in

the extensive media coverage of this study—on the contrary, the newspaper

reports contain implied warnings against pregnant women eating liver, dairy

products, meat and eggs, but none against eating fabricated foods like

margarine and breakfast cereals to which synthetic vitamin A is added. And

there has been no media coverage for subsequent studies, which found that

high levels of vitamin A did not increase the risk of birth defects. A

study carried out in Rome, Italy found no congenital malformations among

120 infants exposed to more than 50,000 IU of vitamin A per day.16 A study

from Switzerland looked at blood levels of vitamin A in pregnant women and

found that a dose of 30,000 IU per day resulted in blood levels that had no

association with birth defects.17

VITAMIN-A SLAVERY

While scientists in America are creating confusion and fear about vitamin

A, WHO and UNICEF vitamin-A-distribution programs in Africa and Asia have

been extremely successful in reducing blindness and death among both

children and adults. Vitamin A is more cost effective in saving lives and

preventing suffering than immunizations and drugs and it can be

administered with 2-cent capsules. The program does not undermine

traditional cultures or foodways and is easily carried out on the village

level.

But this kind of success doesn't sit well with the food and pharmaceutical

industries because it strengthens village life and lessens the market for

drugs and processed foods. Fulsome with praise, the " big guns of the

international food supply system " have joined in a " public-private

partnership " to get in on the program.18 Kellogg, Cargill, Monsanto and

Procter & Gamble have pioneered the addition of vitamin A to margarine,

vegetable oil, wheat flour, sugar and breakfast cereals—even to MSG! At a

formal luncheon hosted by Hillary Clinton, the corporate executives and

leaders of various relief groups announced their goal of showing

" indigenous food companies. . . how to add vitamin A to foods that

low-income people eat. " In other words, vitamin A will be used to promote

processed foods to villagers in Africa and Asia in the guise of

humanitarian relief. Low income people in America eat margarine and other

processed foods, but low-income people in the Third World eat foods grown

by farmers and processed locally by artisans.

And when people refuse to eat processed foods, the " big guns " have devised

another stratagem—genetically engineering rice to produce carotenes. Those

who promote the so-called " golden " rice as a solution to the vitamin-A

problem are either woefully ignorant or unabashedly corrupt. Golden rice

containing carotenes can't provide true vitamin A to the world's children

but it will further the trend of pushing their parents off the farm and

into ghastly slums.

In the process of showing " indigenous food companies. . . how to add

vitamin A to foods. . . " and of inserting genes for producing carotenes

into rice, the multinational corporations will strengthen their grip on the

world's food supply, leading to a disruption of village life and what

Indian writer Vandana Shiva calls " food dictatorship. " If the conglomerates

have their way, programs to promote golden rice and " enriched " processed

foods will replace programs to distribute vitamin-A capsules, increasing

the suffering of children and worldwide economic slavery.

What can we in the west do to foil the nefarious plans of the

food-and-pharmaceutical-complex in nations less prosperous than our own?

The answer is simple: cut off their funding at the source by refusing to

spend money on their products. Boycott processed foods; avoid

pharmaceutical drugs. The better way to physical and economic health is

through foods containing vitamin A.

Note: Your donations can help support the campaign to provide vitamin A

capsules to children in Africa and Asia. For details see www.the

childsurvivalsite.com.

REFERENCES

WA Price. Nutrition and Physical Degeneration. Price-Pottenger Nutrition

Foundation, San Diego, CA, p 280.

The history outlined here has been expertly compiled by G Wolf. " A History

of Vitamin A and Retinoids. " The FASEB Journal, July 1996, 10:1102-1107.

M Gerson, MD. A Cancer Therapy: Results of Fifty Cases. Totality Books, Del

Mar, CA, 1958.

GE . World Without Cancer. American Media, Westlake Village, CA,

1974, pp 462-3.

NW s, J Bulus. " Plant sources of provitamin A and human nutriture. "

Nutrition Review, Springer Verlag New York, Inc, July 1993, 51:1992-4.

IW Jennings. Vitamins in Endocrine Metabolism. C. Publisher,

Springfield, Illinois.

LJ Dunne. Nutrition Almanac, Third Edition, McGraw-Hill Publishing Company,

1990.

Jennings, Op Cit.

WA Price. Op Cit.

s, Op Cit.

Personal Communication, Ruth Rosevear

Protein calories should comprise about 15 percent of the diet. Fat calories

in children's diets should be greater than 40 percent of total calories.

Angler. " Vitamins Win Support as Potent Agents of Health, " New York

Times, March 10, 1992.

Brown. " It's Cheap and Effective, With Wonders Still Being

(Re)discovered. " The Washington Post, November 7,1994.

KJ Rothman and others. " Teratogenicity of high vitamin A intake. " New

England Journal of Medicine. November 23, 1995 333(21):1414-5.

P Mastroiacovo and others. " High vitamin A intake in early pregnancy and

major malformations: a multicenter prospective controlled study. "

Teratology. January 1999 59(1):1-2.

UW Wiegand and others. " Safety of vitamin A: recent results. " International

Journal of Vitamin and Nutrition Research. 1998, 68(6):411-6.

J Mann. " Saving Young Lives With a 2-Cent Capsule. " The Washington Post,

March 17, 1999.

Sidebar Articles

----------------------------------------------------------------------------

----

THE SUCCESS OF VITAMIN A

One of the most successful programs in the history of nutrition science is

the global campaign to distribute high-dose vitamin-A capsules to children

throughout Africa and Asia. Launched in 1997, the global campaign is a

partnership between UNICEF and the World Health Organization (WHO) as well

as the governments of Canada, the United Kingdom, the Netherlands, Japan

and the United States Agency for International Development (USAID). The

program has been particularly successful in Nepal where groups of local

women known as Female Community Health Volunteers help distribute the

capsules throughout the rugged terrain. In 2000, over 90 percent of

Nepalese children had received their yearly dosage of vitamin A.

Although the vitamin A distributed is synthetic and not the natural form

derived from fish oils, it is the animal form of vitamin A (retinol), not

carotenes. Children six to twelve months old receive two doses of 100,000

units per year; children over 12 months receive two doses of 200,000 per

year. According to Werner Schultink, head of the Nutrition Section at

UNICEF headquarters in New York, infant and child mortality drops about 23

percent when vitamin A levels are adequate. The program in Nepal costs just

over $2 million per year, less than $1 per child (Reuter's 2/12/01).

----------------------------------------------------------------------------

----

CONVERSION OF CAROTENES TO VITAMIN A

The many conditions that interfere with the conversion of carotenes in

plant foods to vitamin A include:

Being an infant or child

Diabetes

Low Thyroid Function

Low Fat Intake

Intestinal Roundworms

Diarrhea

Pancreatic Disease

Celiac Disease

Sprue

----------------------------------------------------------------------------

----

THE MYTH OF VITAMIN A TOXICITY

Typical of the orthodox medical view of vitamin A is the following

statement, posted at WebMD.com: " Vitamin A can be very toxic when taken in

high-dose supplements for long periods of time and can affect almost every

part of the body, including eyes, bones, blood, skin, central nervous

system, liver, and genital and urinary tracts. Symptoms include dizziness,

nausea, vomiting, headache, skin damage, mental disturbances and, in women,

infrequent periods. Severe toxicity can cause blindness and may even be

life-threatening. Liver damage can occur in children who take RDA-approved

adult levels over prolonged periods of time or in adults who take as little

as five times the RDA-approved amount for seven to ten years. In children,

chronic overdose can cause fluid on the brain and other symptoms similar to

those in adults. Pregnant women who take amounts not much higher than RDA

levels increase the risk for birth defects in their children. High

consumption of vitamin A may also increase the risk of gastric cancer and

the risk of osteoporosis and fractures in women. "

The Merck Manual describes vitamin-A toxicity in less hysterical terms.

Acute vitamin-A poisoning can occur in children after taking a single dose

of synthetic vitamin A in the range of 300,000 IU or a daily dosage of

60,000 IU for a few weeks. Two fatalities have been reported from acute

vitamin-A poisoning in children, which manifests as increased intracranial

pressure and vomiting. For the vast majority, however, recovery after

discontinuation is " spontaneous, with no residual damage. "

In adults, according to the Merck Manual, vitamin-A toxicity has been

reported in arctic explorers who developed drowsiness, irritability,

headaches and vomiting, with subsequent peeling of the skin, within a few

hours of ingesting several million units of vitamin A from polar bear or

seal liver. Again, these symptoms cleared up with discontinuation of the

vitamin-A rich food. Other than this unusual example, however, only

vitamin-A from " megavitamin tablets containing vitamin A. . . when taken

for a long time " has induced acute toxicity, that is, 100,000 IU synthetic

vitamin-A per day taken for many months.

Unless you are an arctic explorer, it is virtually impossible to develop

vitamin-A toxicity from food. The putative toxic dose of 100,000 IU per day

would be contained in 3 tablespoons of high vitamin cod liver oil, 6

tablespoons of regular cod liver oil, two-and-one-half 100-gram servings of

duck liver, about three 100-gram servings of beef liver, seven pounds of

butter or 309 egg yolks. Even synthetic vitamin A is not toxic when given

as a single large dose or in small amounts on a daily basis. Children in

impoverished areas of the world are routinely given two 100,000-unit doses

of retinol per year for infants and two 200,000-unit doses for children

over 12 months.

The tragedy is that misplaced concern about vitamin-A toxicity has led

doctors to advise pregnant women to avoid foods containing vitamin A, and

parents to avoid giving cod liver oil to their babies. Yet the early books

on the feeding of pregnant women and infants recommended generous doses of

cod liver oil and frequent liver consumption for pregnant women and two

teaspoons of cod liver oil per day for babies three months and older. A

majority of our medical problems would clear up very quickly if the

populace would return to eating liver and embrace the use of cod liver

oil—our finest superfoods.

----------------------------------------------------------------------------

----

GETTING IT WRONG

" Vitamin A can be found in fish liver oils, animal livers and green and

yellow fruits and vegetables. " —Prescription for Nutritional Healing by

F. Balch, MD and Phillis A. Balch, CNC. (However, the authors include

the following warning at the end of their section on vitamin A: " Diabetics

should avoid beta-carotene as should hypothyroid individuals, because they

cannot convert beta-carotene to vitamin A. " )

" Cod liver oil used to be taken routinely as a source of vitamin A. But

many experts now believe that as a nutritional aid, the oil is obsolete. We

can only consume vitamin A directly in the meat of animals—liver is the

richest source. But bright orange fruits and vegetables and dark, leafy

greens contain beta-carotene which our bodies convert into the vitamin. . .

Before the days of refrigerated trucks and mass distribution of produce,

vitamin A deficiency was an enormous problem. . . . But today most people

have access to a wide range of produce year-round. What's more,

beta-carotene supplements are also widely available. " —Article on WebMD.com

by Cullen, RD, PhD

" Vitamin A is found in animal produce and beta-carotene, a vitamin-A-type

compound. It is found in the yellow pigments of vegetables. . . If it is

not needed, it remains as beta-carotene; if needed, it is converted into

vitamin A. . . vitamin A supplements [are] not necessary. " —Enhancing

Fertility Naturally by Nicky Wesson

" Vitamin A is found in the form of betacarotene in leafy green vegetables,

carrots, sweet potatoes, winter squash and cantelope in adequate amounts to

supply a child's daily needs. . . " —Dr. Attwood's Low-Fat Prescription for

Kids by Dr. R. Attwood

" Vitamin A's toxicity depends on its form. Only retinol and the other

varieties found in animal foods are capable of doing much harm.

Carotenoids, the vegetable sources of vitamin A, don't seem to be toxic

even when extraordinarily large amounts are consumed. " —The University of

California San Diego Nutrition Book by Saltman, PhD, Gurin and

Ira Mothner

" The carotenes. . . are the main source of vitamin A. " Basic Food Chemistry

by E. Lee, PhD " Yellow, deep orange/red and dark green vegetables and

fruits. . . are high in vitamin A. . . " —The Breast Cancer Survival Manual

by Link, MD

" Vitamin A taken too enthusiastically can be toxic, since it is stored in

the liver. Beta-carotene, however, is not converted into vitamin A unless

the body requires it, and you cannot suffer from toxic levels of it. " —The

Endometriosis Answer Book by Niels H Lauersen and Constance deSwaan

----------------------------------------------------------------------------

----

VITAMIN A—THE MIRACLE NUTRIENT

Vitamin A supplementation of children in Asia and Africa has been extremely

effective in reducing the rates of infection, diarrhea, anemia and

blindness (Reuter's 2/12/01). African and Asian children receiving

vitamin-A supplements grow faster, have better hemoglobin values and die

30-60 percent less frequently than nonsupplemented peers (J Nutr Jan 1989

119(1):96-100).

Vitamin A supplementation can reduce the incidence of malaria. Children in

Papua New Guinea given high doses of vitamin A had a 30 percent lower

incidence of malaria than those receiving a placebo (The Lancet, 1999,

354:203-9).

Vitamin A plays a vital regulating role in the immune system. Vitamin A

deficiency leads to a loss of ciliated cells in the lung, an important

first line defense against pathogens. Vitamin A promotes mucin secretion

and microvilli formation by mucosa, including the gastrointestinal tract

mucosa. Vitamin A regulates T-cell production and apoptosis (programmed

cell death) (Nutrition Reviews 1998;56:S38-S48).

HIV transmission is closely correlated with levels of vitamin A in mothers.

A study in Malawi, Africa found that mothers with the highest levels of

vitamin A had an HIV transmission rate of just 7.2 percent (Celia Farber,

" A Timely Firestorm, " www.ironminds.com).

Treatment with megadoses of vitamin A (100,000 IU per day) resulted in a 92

percent cure rate of menorrhagia (excessive menstrual bleeding) at

Johannesburg General Hospital in South Africa (S Afr Med J 1977).

Lack of vitamin A interferes with optimal function of the hippocampus, the

main seat of learning. Scientists at the Salk Institute for Biological

Studies in San Diego, California, found that removing vitamin A from the

diets of mice diminished chemical changes in the brain considered the

hallmarks of learning and memory (Proc Natl Acad Sci, Sep 25, 2001

98(20):11714-9).

Natural vitamin A helps reconnect retinoid receptors critical for vision,

sensory perception, language processing and attention in autistic children.

Use of cod liver oil helps children recover from autism due to the DPT

vaccine. The pertussis toxin interferes with retinoid receptors in the

brain (Med Hypothesis, Jun 2000 54(6):979-83).

Vitamin A can be helpful in the treatment of psoriasis. Researchers found

that patients suffering from severe psoriasis had low blood levels of

vitamin A (Acta Derm Venereol Jul 1994 74(4):298-301).

In stroke victims, those with high levels of vitamin A are more likely to

recover without damage (The Lancet, Mar 25, 1998, pp 47-50).

Vitamin A protects against lung and bladder cancers in men (Alt Cancer Inst

Monogr Dec 1985 69:137-42). Fourteen out of 20 patients with prostate

cancer achieved total remission and five achieved partial remission using

vitamin A as part of a natural cancer therapy in Germany (Drugs Exp Clin

Res 2000;26(65-6):249-52).

Vitamin A was used successfully by Dr. L. J. A. Loewenthal, to combat

tropical ulcers in Uganda (S Afr Med J Dec 24 1983 64(27):1064-7).

Vitamin A has also been used successfully to treat a skin condition called

Kyrle's disease (Cutis Dec 1982 30(6):753-5, 759). Elderly persons who

consume adequate vitamin A are less prone to leg ulcers (Veris Newsletter

Dec 1999;15(4):5).

Chronic vitamin-A deficiency causes degeneration of the structures of the

ear. Decreased auditory function in humans is associated with low vitamin-A

levels. (Arch Otorhinolaryngol 1982;234(2):167-73).

Vitamin A inhibits the effects of phytic acid and increases absorption of

iron from whole wheat. (Arch Latinoam Nutr Sep 2000;50(3):243-8). Vitamin A

supplementation increases absorption of iron and folic acid in women in

Bangladesh (Am J Clin Nutr Jul 2001;74(1):108-15).

Use of vitamin A supplements reduces the risk of cataracts (Am J Ophthalmol

Jul 2001;132(1):19-26).

----------------------------------------------------------------------------

----

SOURCES OF VITAMIN A

Listed below are approximate levels of vitamin A in common foods, in IUs

per 100 grams:

High-vitamin cod liver oil 230,000

Regular cod liver oil 100,000

Duck liver 40,000

Beef liver 35,000

Goose liver 31,000

Liverwurst sausage (pork) 28,000

Lamb liver 25,000

It should be noted that these amounts can vary according to how the animals

are fed. Weston Price noted a huge variation in vitamin-A content of butter

according to the season. In addition, absorption of vitamin A varies

according to the food. Research carried out during the 1940s indicates that

vitamin A is more easily absorbed from butter than from other foods.

The US Recommended Daily Allowance of vitamin A is currently 5,000 IU per

day (and may possibly be lowered to 2500 IU per day). From the work of

Weston Price, we can assume that the amount in primitive diets was about

50,000 IU per day, which could be achieved in a modern diet by consuming

generous amounts of whole milk, cream, butter and eggs from pastured

animals; beef or duck liver several times per week; and 1 tablespoon

regular cod liver oil or 1/2 tablespoon high-vitamin cod liver oil per day.

----------------------------------------------------------------------------

----

ARE CAROTENES SAFE?

Are carotenes safe in large doses, as claimed? Dependence on carotenes for

vitamin A calls on large reserves of enzymes to make the conversion. In

their fascinating book Nutrition and Evolution, Crawford and

Marsh note that in animals, " if any function can be delegated to another

organism it leaves the disk space free to perform some new function or to

perform an old one better. " The cat species does not synthesize vitamin A

from carotenes. " If they had to synthesize their own vitamin A . . . it

would take up a significant amount of their disk space. " Cats get vitamin A

from their prey, whose ability to synthesize vitamin A from carotenes

compromises other functions, such as night vision and quickness of

movement. While medical orthodoxy claims that consumption of large amounts

of carotenes has no downside, it is possible that dependence on carotenes

for vitamin A, even in those who are good converters, compromises other

biochemical functions in subtle ways.

The so-called nontoxic betacarotene supplements contain a synthetic form of

carotene, just one of 50 or 60 carotenes found in the typical diet. The

biological activity of synthetic betacarotene is much lower than that of

the natural complexes of carotenes and, in fact, may put stress on the

immune system Studies with humans and rats given synthetic betacarotene

found an increase in white blood cells. In cancer trials, synthetic

betacarotenes were not found to be protective. In fact, in one study,

patients given synthetic betacarotene had worse results than controls (NEJM

April 1994 330:(15);891-895).

Read a selection from this article in Dutch!

--------------------------------------------------------

Sheri Nakken, former R.N., MA, Hahnemannian Homeopath

Vaccination Information & Choice Network, Nevada City CA & Wales UK

Vaccines -

http://www.wellwithin1.com/vaccine.htm Vaccine

Dangers & Childhood Disease & Homeopathy Email classes start in December 2008

Link to comment
Share on other sites

Join the conversation

You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...