Guest guest Posted January 27, 2010 Report Share Posted January 27, 2010 Airway nerves and dyspnea associated with inflammatory airway disease. Undem Bradley J; Nassenstein (Profiled Author: UNDEM, BRADLEY) Respiratory physiology & neurobiology 2009;167(1):36-44. PubMedAbstract The neurobiology of dyspnea is varied and complex, but there is little doubt that vagal nerves within the airways are capable of causing or modulating some dyspneic sensations, especially those associated with inflammatory airway diseases. A major contributor to the dyspnea associated with inflammatory airway disease is explained by airway narrowing and increases in the resistance to airflow. The autonomic (parasympathetic) airway nerves directly contribute to this by regulating bronchial smooth muscle tone and mucus secretion. In addition, a component of the information reaching the brainstem via airway mechanosensing and nociceptive afferent nerves likely contributes to the overall sensations of breathing. The airway narrowing can lead to activation of low threshold mechanosensitive stretch receptors, and vagal and spinal C-fibers as well as some rapidly adapting stretch receptor in the airways that are directly activated by various aspects of the inflammatory response. Inflammatory mediators can induce long lasting changes in afferent nerve activity by modulating the expression of key genes. The net effect of the increase in afferent traffic to the brainstem modulates synaptic efficacy at the second-order neurons via various mechanisms collectively referred to as central sensitization. Many studies have shown that stimuli that activate bronchopulmonary afferent nerves can lead to dyspnea in healthy subjects. A logical extension of the basic research on inflammation and sensory nerve function is that the role of vagal sensory nerve in causing or shaping dyspneic sensations will be exaggerated in those suffering from inflammatory airway disease. ------------------------ Mast cell-cholinergic nerve interaction in mouse airways. Weigand Letitia A; Myers C; Meeker Sonya; Undem Bradley J (Profiled Authors: MYERS, ALLEN; UNDEM, BRADLEY; MEEKER, SONYA) Department of Medicine, s Hopkins University, Baltimore, MD, USA. The Journal of physiology 2009;587(Pt 13):3355-62. PubMedAbstract We addressed the mechanism by which antigen contracts trachea isolated from actively sensitized mice. Trachea were isolated from mice (C57BL/6J) that had been actively sensitized to ovalbumin (OVA). OVA (10 microg ml(-1)) caused histamine release (approximately total tissue content), and smooth muscle contraction that was rapid in onset and short-lived (t(1/2) < 1 min), reaching approximately 25% of the maximum tissue response. OVA contraction was mimicked by 5-HT, and responses to both OVA and 5-HT were sensitive to 10 microm-ketanserin (5-HT(2) receptor antagonist) and strongly inhibited by atropine (1microm). Epithelial denudation had no effect on the OVA-induced contraction. Histological assessment revealed about five mast cells/tracheal section the vast majority of which contained 5-HT. There were virtually no mast cells in the mast cell-deficient (sash -/-) mouse trachea. OVA failed to elicit histamine release or contractile responses in trachea isolated from sensitized mast cell-deficient (sash -/-) mice. Intracellular recordings of the membrane potential of parasympathetic neurons in mouse tracheal ganglia revealed a ketanserin-sensitive 5-HT-induced depolarization and similar depolarization in response to OVA challenge. These data support the hypothesis that antigen-induced contraction of mouse trachea is epithelium-independent, and requires mast cell-derived 5-HT to activate 5-HT(2) receptors on parasympathetic cholinergic neurons. This leads to acetylcholine release from nerve terminals, and airway smooth muscle contraction. -------------------------- Development, plasticity and modulation of visceral afferents. Christianson A; Bielefeldt Klaus; Altier Christophe; Cenac Nicolas; M; Gebhart Gerald F; High Karin W; Kollarik n; Randich Alan; Undem Brad; Vergnolle Nathalie (Profiled Authors: KOLLARIK, MARIAN; UNDEM, BRADLEY) University of Pittsburgh School of Medicine, Pittsburgh Center for Pain Research, 200 Lothrop St., Pittsburgh, PA 16261, USA. Brain research reviews 2009;60(1):171-86. PubMedAbstract Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123-1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.