Guest guest Posted March 18, 2011 Report Share Posted March 18, 2011 Eur J Neurosci. 2011 Mar 17. doi: 10.1111/j.1460-9568.2011.07651.x. [Epub ahead of print] Distinct pathogenic processes between Fig4-deficient motor and sensory neurons. Katona I, Zhang X, Bai Y, Shy ME, Guo J, Yan Q, Hatfield J, Kupsky WJ, Li J. Department of Neurology, Wayne State University, Detroit, MI, USA Department of Neurology, Vanderbilt University, 1161 21th Avenue South, Nashville, TN 37232, USA Department of Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA Pathology and Laboratory Medicine Service, D. Dingell VA Medical Center, Detroit, MI, USA Department of Pathology, Wayne State University, Detroit, MI, USA Tennessee Valley Healthcare System - Nashville Campus, Nashville, TN, USA. Abstract Loss of function of the FIG4 gene causes Charcot-Marie-Tooth disease (CMT)-4J with many features also found in motor neuron disease (MND). Mechanisms for the degeneration are unknown. We investigated this using Fig4-deficient pale tremor (plt) mice, a mouse model of CMT4J. Ultrastructural studies in sensory neurons of dorsal root ganglion (DRG) confirmed abundant vacuoles with membrane disruption. The vacuoles became detectable as early as postnatal day 4 in the DRG. However, the vacuoles were absent or minimal in the spinal motor neurons or cortical neurons in 2- to 5-week-old plt mice. Instead, a large number of electron-dense organelles, reminiscent of those in lysosomal storage disorders, accumulated in the motor neurons, but not in the sensory neurons of DRG. This accumulation was associated with increased levels of lysosomal proteins, such as LAMP2 and NPC1, but not mannose-6-phosphate receptor, an endosomal protein that is usually excluded from the lysosomes. Our results suggest that Fig4 deficiency affects motor neurons differently from sensory neurons by mechanisms involving excessive retention of molecules in lysosomes or disruption of vacuolated organelles. These two distinct pathological changes may contribute to neuronal degeneration. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.