Guest guest Posted November 6, 2009 Report Share Posted November 6, 2009 note this new xmrv is VERY closely related to murine leukemia viruses Several murine leukemia viruses (MuLV) induce neurologic disease in susceptible mice. To identify features of central nervous system (CNS) infection that correlate with neurovirulence, we compared two neurovirulent MuLV, Fr98 and Fr98/SE, with a nonneurovirulent MuLV, Fr54. All three viruses utilize the polytropic receptor and are coisogenic, each containing a different envelope gene within a common genetic background. Both Fr98 and Fr98/SE induce a clinical neurologic disease characterized by hyperexcitability and ataxia yet differ in incubation period, 16 to 30 and 30 to 60 days, respectively. Fr54 infects the CNS but fails to induce clinical signs of neurologic disease. In this study, we compared the histopathology, regional virus distribution, and cell tropism in the brain, as well as the relative CNS viral burdens. All three viruses induced similar histopathologic effects, characterized by intense reactive astrogliosis and microglial activation associated with minimal vacuolar degeneration. The infected target cells for each virus consisted primarily of endothelial and microglial cells, with rare oligodendrocytes. Infection localized predominantly in white matter tracts of the cerebellum, internal capsule, and corpus callosum. The only feature that correlated with relative neurovirulence was viral burden as measured by both viral CA protein expression in cerebellar homogenates and quantification of infected cells. Interestingly, Fr54 (nonneurovirulent) and Fr98/SE (slow disease) had similar viral burdens at 3 weeks postinoculation, suggesting that they entered the brain with comparable efficiencies. However, spread of Fr98/SE within the brain thereafter exceeded that of Fr54, reaching levels of viral burden comparable to that seen for Fr98 (rapid disease) at 3 weeks. These results suggest that the determinants of neurovirulence in the envelope gene may influence the efficiency of virus spread within the brain and that a critical number of infected cells may be required for induction of clinical neurologic disease. full text via http://www.ncbi.nlm.nih.gov/pmc/articles/PMC191765/ Quote Link to comment Share on other sites More sharing options...
Guest guest Posted November 6, 2009 Report Share Posted November 6, 2009 natasa, Would you mind giving a short explanation as I don't know what it means? Margaret > > note this new xmrv is VERY closely related to murine leukemia viruses > > Several murine leukemia viruses (MuLV) induce neurologic disease in > susceptible mice. To identify features of central nervous system (CNS) > infection that correlate with neurovirulence, we compared two > neurovirulent MuLV, Fr98 and Fr98/SE, with a nonneurovirulent MuLV, > Fr54. All three viruses utilize the polytropic receptor and are > coisogenic, each containing a different envelope gene within a common > genetic background. Both Fr98 and Fr98/SE induce a clinical neurologic > disease characterized by hyperexcitability and ataxia yet differ in > incubation period, 16 to 30 and 30 to 60 days, respectively. Fr54 > infects the CNS but fails to induce clinical signs of neurologic > disease. In this study, we compared the histopathology, regional virus > distribution, and cell tropism in the brain, as well as the relative CNS > viral burdens. All three viruses induced similar histopathologic > effects, characterized by intense reactive astrogliosis and microglial > activation associated with minimal vacuolar degeneration. The infected > target cells for each virus consisted primarily of endothelial and > microglial cells, with rare oligodendrocytes. Infection localized > predominantly in white matter tracts of the cerebellum, internal > capsule, and corpus callosum. The only feature that correlated with > relative neurovirulence was viral burden as measured by both viral CA > protein expression in cerebellar homogenates and quantification of > infected cells. Interestingly, Fr54 (nonneurovirulent) and Fr98/SE (slow > disease) had similar viral burdens at 3 weeks postinoculation, > suggesting that they entered the brain with comparable efficiencies. > However, spread of Fr98/SE within the brain thereafter exceeded that of > Fr54, reaching levels of viral burden comparable to that seen for Fr98 > (rapid disease) at 3 weeks. These results suggest that the determinants > of neurovirulence in the envelope gene may influence the efficiency of > virus spread within the brain and that a critical number of infected > cells may be required for induction of clinical neurologic disease. > > full text via http://www.ncbi.nlm.nih.gov/pmc/articles/PMC191765/ > Quote Link to comment Share on other sites More sharing options...
Guest guest Posted November 6, 2009 Report Share Posted November 6, 2009 don't mind but not sure what you mean? > > > > note this new xmrv is VERY closely related to murine leukemia viruses > > > > Several murine leukemia viruses (MuLV) induce neurologic disease in > > susceptible mice. To identify features of central nervous system (CNS) > > infection that correlate with neurovirulence, we compared two > > neurovirulent MuLV, Fr98 and Fr98/SE, with a nonneurovirulent MuLV, > > Fr54. All three viruses utilize the polytropic receptor and are > > coisogenic, each containing a different envelope gene within a common > > genetic background. Both Fr98 and Fr98/SE induce a clinical neurologic > > disease characterized by hyperexcitability and ataxia yet differ in > > incubation period, 16 to 30 and 30 to 60 days, respectively. Fr54 > > infects the CNS but fails to induce clinical signs of neurologic > > disease. In this study, we compared the histopathology, regional virus > > distribution, and cell tropism in the brain, as well as the relative CNS > > viral burdens. All three viruses induced similar histopathologic > > effects, characterized by intense reactive astrogliosis and microglial > > activation associated with minimal vacuolar degeneration. The infected > > target cells for each virus consisted primarily of endothelial and > > microglial cells, with rare oligodendrocytes. Infection localized > > predominantly in white matter tracts of the cerebellum, internal > > capsule, and corpus callosum. The only feature that correlated with > > relative neurovirulence was viral burden as measured by both viral CA > > protein expression in cerebellar homogenates and quantification of > > infected cells. Interestingly, Fr54 (nonneurovirulent) and Fr98/SE (slow > > disease) had similar viral burdens at 3 weeks postinoculation, > > suggesting that they entered the brain with comparable efficiencies. > > However, spread of Fr98/SE within the brain thereafter exceeded that of > > Fr54, reaching levels of viral burden comparable to that seen for Fr98 > > (rapid disease) at 3 weeks. These results suggest that the determinants > > of neurovirulence in the envelope gene may influence the efficiency of > > virus spread within the brain and that a critical number of infected > > cells may be required for induction of clinical neurologic disease. > > > > full text via http://www.ncbi.nlm.nih.gov/pmc/articles/PMC191765/ > > > Quote Link to comment Share on other sites More sharing options...
Guest guest Posted November 6, 2009 Report Share Posted November 6, 2009 I don't understand the significance of the study, that's all. Margaret > > > > > > note this new xmrv is VERY closely related to murine leukemia > viruses > > > > > > Several murine leukemia viruses (MuLV) induce neurologic disease in > > > susceptible mice. To identify features of central nervous system > (CNS) > > > infection that correlate with neurovirulence, we compared two > > > neurovirulent MuLV, Fr98 and Fr98/SE, with a nonneurovirulent MuLV, > > > Fr54. All three viruses utilize the polytropic receptor and are > > > coisogenic, each containing a different envelope gene within a > common > > > genetic background. Both Fr98 and Fr98/SE induce a clinical > neurologic > > > disease characterized by hyperexcitability and ataxia yet differ in > > > incubation period, 16 to 30 and 30 to 60 days, respectively. Fr54 > > > infects the CNS but fails to induce clinical signs of neurologic > > > disease. In this study, we compared the histopathology, regional > virus > > > distribution, and cell tropism in the brain, as well as the relative > CNS > > > viral burdens. All three viruses induced similar histopathologic > > > effects, characterized by intense reactive astrogliosis and > microglial > > > activation associated with minimal vacuolar degeneration. The > infected > > > target cells for each virus consisted primarily of endothelial and > > > microglial cells, with rare oligodendrocytes. Infection localized > > > predominantly in white matter tracts of the cerebellum, internal > > > capsule, and corpus callosum. The only feature that correlated with > > > relative neurovirulence was viral burden as measured by both viral > CA > > > protein expression in cerebellar homogenates and quantification of > > > infected cells. Interestingly, Fr54 (nonneurovirulent) and Fr98/SE > (slow > > > disease) had similar viral burdens at 3 weeks postinoculation, > > > suggesting that they entered the brain with comparable efficiencies. > > > However, spread of Fr98/SE within the brain thereafter exceeded that > of > > > Fr54, reaching levels of viral burden comparable to that seen for > Fr98 > > > (rapid disease) at 3 weeks. These results suggest that the > determinants > > > of neurovirulence in the envelope gene may influence the efficiency > of > > > virus spread within the brain and that a critical number of infected > > > cells may be required for induction of clinical neurologic disease. > > > > > > full text via http://www.ncbi.nlm.nih.gov/pmc/articles/PMC191765/ > > > > > > Quote Link to comment Share on other sites More sharing options...
Guest guest Posted November 6, 2009 Report Share Posted November 6, 2009 brain pathology findings in these mice match closely those seen in autism (in johns hopkins autopsy study) - microglial/astocyte activation and neurotoxicity in absence of antibody infiltration to the brain... the viruses in this study are very closely related to xmrv, the one making the news as found in most chronic fatigue patients, and lots of autism cases (althought very small sample tested 40-70% are testing postive so far) natasa x I don't understand the significance of the study, that's all. Margaret > > > > > > note this new xmrv is VERY closely related to murine leukemia > viruses > > > > > > Several murine leukemia viruses (MuLV) induce neurologic disease in > > > susceptible mice. To identify features of central nervous system > (CNS) > > > infection that correlate with neurovirulence, we compared two > > > neurovirulent MuLV, Fr98 and Fr98/SE, with a nonneurovirulent MuLV, > > > Fr54. All three viruses utilize the polytropic receptor and are > > > coisogenic, each containing a different envelope gene within a > common > > > genetic background. Both Fr98 and Fr98/SE induce a clinical > neurologic > > > disease characterized by hyperexcitability and ataxia yet differ in > > > incubation period, 16 to 30 and 30 to 60 days, respectively. Fr54 > > > infects the CNS but fails to induce clinical signs of neurologic > > > disease. In this study, we compared the histopathology, regional > virus > > > distribution, and cell tropism in the brain, as well as the relative > CNS > > > viral burdens. All three viruses induced similar histopathologic > > > effects, characterized by intense reactive astrogliosis and > microglial > > > activation associated with minimal vacuolar degeneration. The > infected > > > target cells for each virus consisted primarily of endothelial and > > > microglial cells, with rare oligodendrocytes. Infection localized > > > predominantly in white matter tracts of the cerebellum, internal > > > capsule, and corpus callosum. The only feature that correlated with > > > relative neurovirulence was viral burden as measured by both viral > CA > > > protein expression in cerebellar homogenates and quantification of > > > infected cells. Interestingly, Fr54 (nonneurovirulent) and Fr98/SE > (slow > > > disease) had similar viral burdens at 3 weeks postinoculation, > > > suggesting that they entered the brain with comparable efficiencies. > > > However, spread of Fr98/SE within the brain thereafter exceeded that > of > > > Fr54, reaching levels of viral burden comparable to that seen for > Fr98 > > > (rapid disease) at 3 weeks. These results suggest that the > determinants > > > of neurovirulence in the envelope gene may influence the efficiency > of > > > virus spread within the brain and that a critical number of infected > > > cells may be required for induction of clinical neurologic disease. > > > > > > full text via http://www.ncbi.nlm.nih.gov/pmc/articles/PMC191765/ > > > > > > Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.