Jump to content
RemedySpot.com

Microbial growth inside saline-filled breast implants

Rate this topic


Guest guest

Recommended Posts

Guest guest

Plast Reconstr Surg. 1997 Jul;100(1):182-96.

Microbial growth inside saline-filled breast implants.

Young VL, Hertl MC, Murray PR, Jensen J, Witt H, Schorr MW.

Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Mo., USA.

Abstract

In vitro and in vivo experiments were conducted to determine whether intraluminal saline in breast implants can support the growth of common wound-infecting microorganisms over a prolonged period of time. The bacteria tested were Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Corynebacterium jeikeium, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Three fungal species also were tested: Aspergillus fumigatus, Paecilomyces variotii, and Candida albicans. In the in vitro study, four organisms survived in flasks of sterile saline for the 2 weeks in which serial cultures were performed: K. pneumoniae, C. albicans, A. fumigatus, and P. variotii. In the in vivo study, 61 white rabbits (122 implants) received both an experimental implant inoculated with one of the test organisms and a control implant containing only sterile saline. They were sacrificed at 1-, 3-, or 6-month scheduled endpoints. None of the control implants containing sterile saline had positive cultures. In contrast, the intraluminal saline was culture positive for 7 of the 10 inoculated organisms after varying lengths of time: S. epidermidis, E. coli, E. cloacae, K. pneumoniae, P. aeruginosa, A. fumigatus, and P. variotii. Samples of capsular tissue also were cultured. Of the 122 capsular tissue specimens, 21 (17 percent) had positive cultures and surrounded both inoculated and sterile implants. In most instances, capsules that were culture positive contained an organism different from the one that had been inoculated in the group. In only 3 cases was the same organism cultured from both the periprosthetic tissue and the intraluminal saline, and these may represent instances of the inoculated organism migrating through the implants filler valves. The data show that several types of bacteria (particularly gram-negative species) and fungi can grow and reproduce in a restricted saline environment for extended periods of time.

PMID: 9207676 [PubMed - indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed?term=organisms%20found%20inside%20breast%20implants

Plast Reconstr Surg. 2004 Oct;114(5):1170-8.

Fungal growth inside saline-filled implants and the role of injection ports in fungal translocation: in vitro study.

Saray A, Kilic D, Kaygusuz S, Boyunaga H, Ozlük O.

Department of Plastic and Reconstructive Surgery,Kirikkale University Medical School, Kirikkale, Turkey. aydinsaray@...

Abstract

Infection is a serious complication of breast augmentation and tissue expansion with inflatable devices. Several reports have shown that fungi may be able to survive, colonize, and even cause infection in saline-filled devices. The mechanism of how they penetrate, spread, and colonize inside the inflatable implants is not exactly understood. The authors assessed both the expander membrane and the port in terms of leakage and penetration of Candida albicans and Aspergillus niger in an in vitro model. Thirty saline-filled expanders connected to the injection port were placed in sterile containers filled with tryptic soy broth culture medium to simulate the clinical situation in phases I and II. Intact and multipunctured ports were used in the first and second phases of the study, respectively. Either the container or the implant was inoculated with one of these fungi, and six implants in containers without fungal inoculation served as controls. As a third phase, intraluminal survival of fungi was investigated in saline-filled containers (n = 12) in 21 days. The silicone membrane, with its intact connecting tube and port, was impermeable to these fungi, whereas both fungi were able to diffuse inside-out or outside-in through the punctured ports. C. albicans did not survive beyond 18 days in saline, whereas A. niger continued to multiply at day 21. Chemical analyses of the implant fluids revealed that the contents of the culture medium diffused into the implants in phases I and II. The data show that an intact silicone membrane is impermeable to fungi, and punctured ports allow translocation of fungi into the implants. Fungi can grow and reproduce in a saline-only environment, and their survival periods differ among the species. Furthermore, their survival may be enhanced by the influx of substances through the implant shell.

PMID: 15457030 [PubMed - indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/15457030

When the power of love

overcomes the love of power

the world will know peace.

~ Jimi Hendrix

Link to comment
Share on other sites

Join the conversation

You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...