Guest guest Posted September 3, 2002 Report Share Posted September 3, 2002 These would be some articles to share with your doctors if you want to ask them about the FDG Pet Scan. Regards, Pam ------------- J Neurol Sci 2002 Aug 15;200(1-2):79-84 Cerebral metabolic changes in early multiple system atrophy: a PET study. Taniwaki T, Nakagawa M, Yamada T, Yoshida T, Ohyagi Y, Sasaki M, Kuwabara Y, Tobimatsu S, Kira J. Department of Neurology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan Previous positron emission tomography (PET) studies have shown widespread hypometabolism in the brain of advanced MSA but the time course of these metabolic abnormalities is largely unknown. In order to clarify the principal disease processes in multiple system atrophy (MSA) in the early stage, we investigated regional cerebral glucose metabolism (rCMGglc) and nigral dopaminergic function in nine patients with early stage of MSA using [18F]fluorodeoxyglucose (FDG) and 6-L-[18F]fluorodopa (18F-Dopa) positron emission tomography (PET) (two men and seven women; age, 59.3+/-5.4 years; disease duration, 29.7+/-14.6 months). The rCMRglc in the early MSA patients significantly decreased in the cerebellum, brainstem, and striatum compared with that in nine normal subjects. A significant correlation was found between the severity of autonomic dysfunction and rCMRglc within the brainstem. The severity of extrapyramidal signs also correlated with the decline of F-Dopa uptake but not that of rCMRglc within the striatum. The degree of atrophy on MRI has correlated with neither the clinical symptoms nor rCMRglc at the cerebellum and the brainstem. Our PET studies demonstrated widespread metabolic abnormalities except for the cerebral cortex in the brain of MSA even in the early stage. The hypometabolism in the brainstem was tightly linked to the autonomic dysfunction. Not the striatal dysfunction but the nigral damage may be responsible for the extrapyramidal symptoms in early MSA. PMID: 12127681 [PubMed - in process] ---------------- Mov Disord 1998 Mar;13(2):268-74 Differential diagnosis of parkinsonism with [18F]fluorodeoxyglucose and PET. Antonini A, Kazumata K, Feigin A, Mandel F, Dhawan V, Margouleff C, Eidelberg D. Movement Disorders Center, Department of Neurology, North Shore University Hospital, Manhasset, New York 11030, USA. The clinical differentiation between typical idiopathic Parkinson's disease (IPD) and atypical parkinsonian disorders (APD) is complicated by the presence of signs and symptoms common to both forms of parkinsonism. Metabolic brain imaging with [18F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) may be a useful adjunct in differentiating APD from IPD. To explore this possibility, we studied 48 parkinsonian patients suspected as having possible APD because of a deteriorating response to dopaminergic treatment, the development of autonomic dysfunction, or both. A group of 56 patients with likely IPD served as control subjects. We used quantitative FDG/PET to measure regional rates of cerebral glucose use in IPD and APD patients. We used discriminant analysis to categorize IPD and APD patients based on their regional metabolic data. We found that a linear combination of caudate, lentiform, and thalamic values accurately discriminated APD from IPD patients (p < 0.0001). Significant metabolic abnormalities were present in the striatum and the thalamus of 36 of 48 (75%) APD patients. Our findings show that measurements of regional glucose metabolism can be used to discriminate patients with suspected APD from their counterparts with classic IPD. FDG/PET may be a useful adjunct to the clinical examination in the differential diagnosis of parkinsonism. PMID: 9539340 [PubMed - indexed for MEDLINE] ------------------ Brain 1997 Dec;120 ( Pt 12):2187-95 Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease. Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, Gunther I. PET Department, Scherrer Institute, Villigen, Switzerland. We used PET with the tracers [18F]fluorodeoxyglucose (FDG), [18F]fluorodopa (FDOPA) and [11C]raclopride (RACLO) to study striatal glucose and dopa metabolism, and dopamine D2 receptor binding, respectively, in nine patients with multiple system atrophy. Ten patients with classical Parkinson's disease were investigated with the same three PET tracers' and three separate groups, each of 10 healthy subjects, served as control populations. We found that striatal FDOPA values separated all healthy subjects from patients with parkinsonism but they were not useful in distinguishing multiple system atrophy from Parkinson's disease. Conversely, striatal RACLO as well as FDG values discriminated all multiple system atrophy from Parkinson's disease patients as well as from healthy control subjects. Metabolic and receptor binding decrements in the putamen of multiple system atrophy patients were significantly correlated. Stepwise regression analysis revealed that a linear combination of putamen RACLO and FDOPA values accurately predicted clinical measures of disease severity in the multiple system atrophy group. Our findings suggest that striatal FDG and particularly RACLO are sensitive and effective measures of striatal function and may help characterizing patients with multiple system atrophy. In contrast, FDOPA measurements are accurate in detecting abnormalities of the nigrostriatal dopaminergic system but may not distinguish among different forms of parkinsonism. PMID: 9448574 [PubMed - indexed for MEDLINE] ------------- Ann Nucl Med 1997 Aug;11(3):251-7 Differentiating between multiple system atrophy and Parkinson's disease by positron emission tomography with 18F-dopa and 18F-FDG. Otsuka M, Kuwabara Y, Ichiya Y, Hosokawa S, Sasaki M, Yoshida T, Fukumura T, Kato M, Masuda K. Department of Radiology, Kyushu University, Beppu, Japan. Both the striatal 18F-dopa uptake and brain glucose metabolism were studied by PET with 6-L-[18F]fluorodopa (FD) and [18F]fluorodeoxyglucose (FDG) in 9 patients with multiple system atrophy (MSA) and 15 patients with idiopathic Parkinson's disease (PD). Five of the 9 MSA patients were diagnosed as having olivopontocerebellar atrophy, whereas 2 had striatonigral degeneration and 2 demonstrated Shy-Drager syndrome. The FD uptake ratios to the occipital cortex in the MSA patients at 120 min after the administration of FD were 2.07 +/- 0.31 (mean +/- SD) and 1.96 +/- 0.29 in the caudate and the putamen, respectively, and decreased compared to those in the controls (2.72 +/- 0.11, 2.71 +/- 0.10). The same ratios in the PD patients were 2.07 +/- 0.36 and 1.74 +/- 0.24, respectively, which also decreased, but the decreased uptake in the putamen was more prominent. The caudate-putamen index (CPI)(%), which was calculated by a formula based on the difference in the uptakes in the caudate and putamen divided by the caudate uptake, indicated 5.6 +/- 4.6 in the MSA patients and 14.8 +/- 5.4 in the PD patients. The CPI for all PD patients was more than 7.0, which was the mean + 2SD for the controls, but the CPI for 3 MSA patients was more than 7.0 (accuracy: 88%). The glucose metabolic rates for each region in the PD patients showed no difference from the normal controls. The frontal and the temporal cortical glucose metabolism and the caudate, the putaminal, the cerebellar and the brainstem glucose metabolism in the MSA patients decreased significantly in comparison to those in the controls. But, as the glucose metabolic rates in such regions of each patient overlapped in the two groups, the accuracy of the FDG study for differentiation was lower than that of the FD study. The putaminal glucose metabolic rates, for example, in 3 PD patients were less than 6.8 (mg/min/100 ml), which was the mean-2SD for the controls, while those in 3 MSA patients were more than 6.8 (accuracy: 75%). In addition, the combination of these two methods slightly improved the accuracy. The glucose metabolism is useful for evaluating the regional metabolic activity of the brain, and the FD study, which is specific to the dopamine system, seems to be more useful for differentiating between MSA and PD. PMID: 9310175 [PubMed - indexed for MEDLINE] Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.