Guest guest Posted November 26, 2002 Report Share Posted November 26, 2002 See the attached below for the messages, All. Cheers, Al. Sodium intake in Western societies further increases during childhood and adolescence to reach levels of approximately 150 mmol/day (9 g salt) in adulthood [6]. The PDF-available: Curr Opin Oncol 2002 Nov;14(6):609-15 Bisphosphonates in cancer therapy. Green JR. Bisphosphonates inhibit osteoclast-mediated bone resorption in metastatic bone disease. A wealth of preclinical data have begun to shed light on the complex mechanisms by which bisphosphonates inhibit bone resorption and interfere with the formation and growth of bone metastases. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway, which results in the inhibition of osteoclast function and the induction of apoptosis in osteoclasts and tumor cells alike. There is now extensive evidence that bisphosphonates have cytostatic activity against tumor cell lines and inhibit tumor cell adhesion and invasion of the extracellular matrix. These data are supported by a growing body of evidence from animal models demonstrating that bisphosphonates can reduce skeletal tumor burden. However, it remains unclear whether this reduction reflects a direct antitumor effect or an indirect effect via osteoclast inhibition and alteration of the bone microenvironment. Further preclinical studies are needed to elucidate these biochemical mechanisms fully; ultimately, well-controlled clinical trials will be required to investigate whether the antitumor potential of bisphosphonates translates into a significant clinical benefit for patients with cancer. PMID: 12409650 [PubMed - in process] Age and Ageing 2002; 31: 440-444 Minimal hippocampal width relates to plasma homocysteine in community-dwelling older people H. , Erlick A. C. Pereira, Marc M. Budge and M. Bradley said that age and body mass index accounted for 14.6% of the hippocampus widths and homocysteine accounted for 2.6%. This could relate to: Brain 2002 Oct;125(Pt 10):2332-41 Longitudinal quantitative proton magnetic resonance spectroscopy of the hippocampus in Alzheimer's disease. Dixon RM, Bradley KM, Budge MM, Styles P, AD. Changes in metabolites detected by proton magnetic resonance spectroscopy ((1)H MRS) of the brain have been demonstrated in Alzheimer's disease. Our objectives were, first, longitudinally to measure absolute concentrations of metabolites in both hippocampi, the sites of early Alzheimer's disease, in patients with clinical Alzheimer's disease and controls; secondly, to separate the relative contribution of atrophy and metabolite concentration change to overall signal change; and, thirdly, to determine whether metabolite concentrations in the hippocampus relate to cognitive scores. (1)H MR spectra were acquired from a single voxel (12 x 15 x 25 mm(3) = 4.5 ml) aligned to the long axis of each hippocampus in nine probable or possible Alzheimer's disease subjects diagnosed according to the National Institute of Neurologic and Cognitive Disorders and Stroke (NINCDS) compared with 14 age-matched NINCDS-negative Alzheimer's disease controls. Metabolite concentrations were corrected for the amount of CSF present in the voxel. Hippocampal volumes were measured at the same time. The same protocol was repeated approximately 1 year later. We found that atrophy-corrected hippocampal N-acetylaspartate (NAA) concentration was lower in cognitively impaired subjects compared with controls. This was significant for the left hippocampus (baseline 87% of control, P = 0.013; and at 1 year 76% of control, P = 0.020). Hippocampal volumes also differed significantly between the groups, and decreased significantly over 1 year in the Alzheimer's disease group (12%, P = 0.017). The decrease in [NAA] over 1 year was not significant in either group. Discriminant analysis revealed that the best classification of subjects was by including both left NAA concentration and left hippocampal volume. myo-Inositol signals from these small voxels had poor signal-to-noise and demonstrated no significant changes. We conclude that (1)HMRS-detectable metabolites can be quantified from the hippocampi of cognitively impaired individuals, and that hippocampal [NAA] is significantly reduced in Alzheimer's disease, in excess of atrophy. In our cohort, the differences were more significant for the left hippocampus. PMID: 12244089 [PubMed - indexed for MEDLINE] Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.